Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 30(4): e14698, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600891

RESUMO

AIMS: To investigate the key factors influencing glioma progression and the emergence of treatment resistance by examining the intrinsic connection between mutations in DNA damage and repair-related genes and the development of chemoresistance in gliomas. METHODS: We conducted a comprehensive analysis of deep-targeted gene sequencing data from 228 glioma samples. This involved identifying differentially mutated genes across various glioma grades, assessing their functions, and employing I-TASSER for homology modeling. We elucidated the functional changes induced by high-frequency site mutations in these genes and investigated their impact on glioma progression. RESULTS: The analysis of sequencing mutation results of deep targeted genes in integration revealed that ARID1A gene mutation occurs frequently in glioblastoma and alteration of ARID1A could affect the tolerance of glioma cells to temozolomide treatment. The deletion of proline at position 16 in the ARID1A protein affected the stability of binding of the SWI/SNF core subunit BRG1, which in turn affected the stability of the SWI/SNF complex and led to altered histone modifications in the CDKN1A promoter region, thereby affecting the biological activity of glioma cells, as inferred from modeling and protein interaction analysis. CONCLUSION: The ARID1A gene is a critical predictive biomarker for glioma. Mutations at the ARID1A locus alter the stability of the SWI/SNF complex, leading to changes in transcriptional regulation in glioma cells. This contributes to an increased malignant phenotype of GBM and plays a pivotal role in mediating chemoresistance.


Assuntos
Proteínas de Ligação a DNA , Glioblastoma , Fatores de Transcrição , Humanos , Proteínas de Ligação a DNA/genética , Glioblastoma/genética , Mutação/genética , Proteínas Nucleares/genética , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Fatores de Transcrição/genética
2.
Cancer Lett ; 588: 216812, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490327

RESUMO

The efficacy of temozolomide (TMZ) treatment in glioblastoma (GBM) is influenced by various mechanisms, mainly including the level of O6-methylguanine-DNA methyltransferase (MGMT) and the activity of DNA damage repair (DDR) pathways. In our previous study, we had proved that long non-coding RNA HOTAIR regulated the GBM progression and mediated DDR by interacting with EZH2, the catalytic subunit of PRC2. In this study, we developed a small-molecule inhibitor called EPIC-0628 that selectively disrupted the HOTAIR-EZH2 interaction and promoted ATF3 expression. The upregulation of ATF3 inhibited the recruitment of p300, p-p65, p-Stat3 and SP1 to the MGMT promoter. Hence, EPIC-0628 silenced MGMT expression. Besides, EPIC-0628 induced cell cycle arrest by increasing the expression of CDKN1A and impaired DNA double-strand break repair via suppressing the ATF3-p38-E2F1 pathway. Lastly, EPIC-0628 enhanced TMZ efficacy in GBM in vitro and vivo. Hence, this study provided evidence for the combination of epigenetic drugs EPIC-0628 with TMZ for GBM treatment through the above mechanisms.


Assuntos
Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Dacarbazina/farmacologia , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Quebras de DNA de Cadeia Dupla , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Fator 3 Ativador da Transcrição/genética
3.
Neuro Oncol ; 26(1): 100-114, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37651725

RESUMO

BACKGROUND: Temozolomide (TMZ) treatment efficacy in glioblastoma is determined by various mechanisms such as TMZ efflux, autophagy, base excision repair (BER) pathway, and the level of O6-methylguanine-DNA methyltransferase (MGMT). Here, we reported a novel small-molecular inhibitor (SMI) EPIC-1042 (C20H28N6) with the potential to decrease TMZ efflux and promote PARP1 degradation via autolysosomes in the early stage. METHODS: EPIC-1042 was obtained from receptor-based virtual screening. Co-immunoprecipitation and pull-down assays were applied to verify the blocking effect of EPIC-1042. Western blotting, co-immunoprecipitation, and immunofluorescence were used to elucidate the underlying mechanisms of EPIC-1042. In vivo experiments were performed to verify the efficacy of EPIC-1042 in sensitizing glioblastoma cells to TMZ. RESULTS: EPIC-1042 physically interrupted the interaction of PTRF/Cavin1 and caveolin-1, leading to reduced secretion of small extracellular vesicles (sEVs) to decrease TMZ efflux. It also induced PARP1 autophagic degradation via increased p62 expression that more p62 bound to PARP1 and specially promoted PARP1 translocation into autolysosomes for degradation in the early stage. Moreover, EPIC-1042 inhibited autophagy flux at last. The application of EPIC-1042 enhanced TMZ efficacy in glioblastoma in vivo. CONCLUSION: EPIC-1042 reinforced the effect of TMZ by preventing TMZ efflux, inducing PARP1 degradation via autolysosomes to perturb the BER pathway and recruitment of MGMT, and inhibiting autophagy flux in the later stage. Therefore, this study provided a novel therapeutic strategy using the combination of TMZ with EPIC-1042 for glioblastoma treatment.


Assuntos
Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/genética , Dacarbazina/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Caveolina 1/metabolismo , Caveolina 1/farmacologia , Caveolina 1/uso terapêutico , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/genética , Metilases de Modificação do DNA/genética , Autofagia , Resistencia a Medicamentos Antineoplásicos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/farmacologia , Poli(ADP-Ribose) Polimerase-1/uso terapêutico
4.
Cancer Commun (Lond) ; 43(12): 1326-1353, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37920878

RESUMO

BACKGROUND: Metabolism reprogramming plays a vital role in glioblastoma (GBM) progression and recurrence by producing enough energy for highly proliferating tumor cells. In addition, metabolic reprogramming is crucial for tumor growth and immune-escape mechanisms. Epidermal growth factor receptor (EGFR) amplification and EGFR-vIII mutation are often detected in GBM cells, contributing to the malignant behavior. This study aimed to investigate the functional role of the EGFR pathway on fatty acid metabolism remodeling and energy generation. METHODS: Clinical GBM specimens were selected for single-cell RNA sequencing and untargeted metabolomics analysis. A metabolism-associated RTK-fatty acid-gene signature was constructed and verified. MK-2206 and MK-803 were utilized to block the RTK pathway and mevalonate pathway induced abnormal metabolism. Energy metabolism in GBM with activated EGFR pathway was monitored. The antitumor effect of Osimertinib and Atorvastatin assisted by temozolomide (TMZ) was analyzed by an intracranial tumor model in vivo. RESULTS: GBM with high EGFR expression had characteristics of lipid remodeling and maintaining high cholesterol levels, supported by the single-cell RNA sequencing and metabolomics of clinical GBM samples. Inhibition of the EGFR/AKT and mevalonate pathways could remodel energy metabolism by repressing the tricarboxylic acid cycle and modulating ATP production. Mechanistically, the EGFR/AKT pathway upregulated the expressions of acyl-CoA synthetase short-chain family member 3 (ACSS3), acyl-CoA synthetase long-chain family member 3 (ACSL3), and long-chain fatty acid elongation-related gene ELOVL fatty acid elongase 2 (ELOVL2) in an NF-κB-dependent manner. Moreover, inhibition of the mevalonate pathway reduced the EGFR level on the cell membranes, thereby affecting the signal transduction of the EGFR/AKT pathway. Therefore, targeting the EGFR/AKT and mevalonate pathways enhanced the antitumor effect of TMZ in GBM cells and animal models. CONCLUSIONS: Our findings not only uncovered the mechanism of metabolic reprogramming in EGFR-activated GBM but also provided a combinatorial therapeutic strategy for clinical GBM management.


Assuntos
Glioblastoma , Animais , Linhagem Celular Tumoral , Metabolismo Energético , Receptores ErbB/genética , Receptores ErbB/metabolismo , Ácidos Graxos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Ligases/metabolismo , Ácido Mevalônico/antagonistas & inibidores , Ácido Mevalônico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico
5.
Neuro Oncol ; 25(5): 857-870, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36272139

RESUMO

BACKGROUND: Temozolomide (TMZ) resistance has become an important obstacle affecting its therapeutic benefits. O6-methylguanine DNA methyltransferase (MGMT) is primarily responsible for the TMZ resistance in Glioblastoma multiforme (GBM) patients. In addition, active DNA damage repair pathways can also lead to TMZ resistance. Here, we reported a novel small-molecule inhibitor EPIC-0412 that improved the therapeutic efficacy of TMZ by inhibiting the DNA damage repair pathway and MGMT in GBM via epigenetic pathways. METHODS: The small-molecule compound EPIC-0412 was obtained through high-throughput screening. RNA immunoprecipitation (RIP), chromatin isolation by RNA purification (ChIRP), and chromatin immunoprecipitation (ChIP) assays were used to verify the effect of EPIC-0412. Co-immunoprecipitation (Co-IP) was used to elucidate the interactions of transcription factors at the MGMT promoter region. Animal experiments using a mouse model were performed to verify the efficacy of EPIC-0412 in sensitizing GBM cells to TMZ. RESULTS: EPIC-0412 physically interrupts the binding of HOTAIR and EZH2, leading to the upregulation of CDKN1A and BBC3, causing cell cycle arrest and apoptosis in GBM cells. EPIC-0412 inhibits DNA damage response in GBM cells through the p21-E2F1 DNA damage repair axis. EPIC-0412 epigenetically silences MGMT through its interaction with the ATF3-p-p65-HADC1 axis at the MGMT promoter region. The application of EPIC-0412 restored the TMZ sensitivity in GBM in vivo experiments. CONCLUSION: This study discovered a small-molecule inhibitor EPIC-0412, which enhanced the chemotherapeutic effect of TMZ by acting on the p21-E2F1 DNA damage repair axis and ATF3-p-p65-MGMT axis, providing evidence for combining epigenetic drugs to increase the sensitization toward TMZ in GBM patients.


Assuntos
Glioblastoma , Animais , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , RNA/farmacologia , RNA/uso terapêutico , Linhagem Celular Tumoral
6.
Theranostics ; 12(16): 7032-7050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276638

RESUMO

Rationale: Glioblastoma (GBM) displays a complex metabolic reprogramming in cancer cells. Adenosine triphosphate (ATP) is one of the central mediators of cell metabolism and signaling. GBM cells generate ATP by glycolysis and the tricarboxylic acid (TCA) cycle associated with oxidative phosphorylation (OXPHOS) through the breaking-down of pyruvate or fatty acids to meet the growing energy demand of cancer cells. Therefore, it's urgent to develop novel treatments targeting energy metabolism to hinder tumor cell proliferation in GBM. Methods: Non-targeted metabolomic profiling analysis was utilized to evaluate cell metabolic reprogramming using a small molecule inhibitor (SMI) EPIC-0412 treatment. Cellular oxygen consumption rate (OCR) and the total proton efflux rate (PER), as well as ATP concentration, were tracked to study metabolic responses to specifically targeted inhibitors, including EPIC-0412, arachidonyl trifluoromethyl ketone (AACOCF3), and 2 deoxy-D-glucose (2-DG). Cancer cell proliferation was assessed by CCK-8 measurements and colony formation assay. Additionally, flow cytometry, immunoblotting (IB), and immunofluorescence (IF) analyses were performed with GBM cells to understand their tumorigenic properties under treatments. Finally, the anticancer effects of this combination therapy were evaluated in the GBM mouse model by convection-enhanced delivery (CED). Results: We found that SMI EPIC-0412 could effectively perturb the TCA cycle, which participated in the combination therapy of cytosolic phospholipase A2 (cPLA2)-inhibitor AACOCF3, and hexokinase II (HK2)-inhibitor 2-DG to disrupt the GBM energy metabolism for targeted metabolic treatments. ATP production was significantly declined in glioma cells when treated with monotherapy (EPIC-0412 or AACOCF3), dual therapy (EPIC-0412 + AACOCF3), or triple therapy (EPIC-0412 + AACOCF3 +2-DG) regimen. Our experiments revealed that these therapies hindered glioma cell proliferation and growth, leading to the reduction in ATP production and G0/G1 cell cycle arrest. We demonstrated that the combination therapy effectively extended the survival of cerebral tumor-bearing mice. Conclusion: Our findings indicate that the TCA-phospholipid-glycolysis metabolism axis can be blocked by specific inhibitors that significantly disrupt the tumor energy metabolism and suppress tumor proliferation in vitro and in vivo, suggesting that targeting ATP synthesis inhibition in cancer cells might be an attractive therapeutic avenue in GBM management.


Assuntos
Glioblastoma , Glioma , Fosfolipídeos , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Ácidos Graxos , Glioblastoma/metabolismo , Glucose/metabolismo , Glicólise/fisiologia , Hexoquinase/antagonistas & inibidores , Fosfolipases A2/metabolismo , Fosfolipases A2 Citosólicas/metabolismo , Fosfolipídeos/metabolismo , Prótons , Piruvatos/metabolismo , Ácidos Tricarboxílicos/uso terapêutico
7.
Neuro Oncol ; 24(11): 1871-1883, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35312010

RESUMO

BACKGROUND: Targeting glioblastoma (GBM) energy metabolism through multiple metabolic pathways has emerged as an effective therapeutic approach. Dual inhibition of phospholipid and mitochondrial metabolism with cytoplasmic phospholipase A2 (cPLA2) knockdown and metformin treatment could be a potential strategy. However, the strategic prerequisite is to explore a carrier capable of co-delivering the therapeutic combination to cross the blood-brain barrier (BBB) and preferentially accumulate at the GBM site. METHODS: Blood exosomes (Exos) were selected as the combination delivery carriers. The cellular uptake of Exos and the therapeutic effects of the combination strategy were evaluated in primary GBM cells. In vivo GBM-targeted delivery efficiency and anti-GBM efficacy were tested in a patient-derived xenograft (PDX) model. RESULTS: Here, we showed that the Exos-mediated cPLA2 siRNA/metformin combined strategy could regulate GBM energy metabolism for personalized treatment. Genomic analysis and experiments showed that polymerase 1 and transcript release factor (PTRF, a biomarker of GBM) positively regulated the uptake of Exos by GBM cells, confirming the feasibility of the delivery strategy. Further, Exos could co-load cPLA2 siRNA (sicPLA2) and metformin and co-deliver them across the BBB and into GBM tissue. The mitochondrial energy metabolism of GBM was impaired with this combination treatment (Exos-Met/sicPLA2). In the PDX GBM model, systemic administration of Exos-Met/sicPLA2 reduced tumor growth and prolonged survival. CONCLUSIONS: Our findings demonstrated that Exos-based combined delivery of sicPLA2 and metformin selectively targeted the GBM energy metabolism to achieve antitumor effects, showing its potential as a personalized therapy for GBM patients.


Assuntos
Exossomos , Glioblastoma , Metformina , Humanos , Linhagem Celular Tumoral , Metabolismo Energético , Exossomos/metabolismo , Glioblastoma/patologia , Fosfolipases A2/metabolismo , Fosfolipases A2/uso terapêutico , Fosfolipases A2 Citosólicas/metabolismo , RNA Interferente Pequeno , Ensaios Antitumorais Modelo de Xenoenxerto , Animais
8.
J Mater Chem B ; 10(11): 1833-1842, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35212350

RESUMO

Liposomes have been developed as drug delivery carriers to enhance the antitumor efficiency of therapeutic agents. Lipusu® (Lip), a paclitaxel (PTX) liposome, has been widely used in the treatment of breast cancer. Compared with PTX, Lip could change the biodistribution and reduce the systemic toxicity. However, there was no positive effect on the entry of PTX into tumor cells, and thus the therapeutic effect was not significantly improved. Therefore, it is meaningful to engineer Lip for improving tumor cellular uptake efficiency. Here, lysophosphatidylcholine (LPC)-engineered Lip (LPC-Lip) was constructed via inserting single chain lipid tails into liposomal lipid bilayers, which was realized by simple incubation. Compared with Lip, the better cellular uptake of liposomes modified with LPC resulted in enhanced cytotoxic activity of LPC-Lip in 4T1 cells. Furthermore, stronger tumor growth inhibition was observed in LPC-Lip treated 4T1 tumor-bearing mice without significant side effects. In conclusion, by modulating the lipid composition of Lip, the antitumor efficacy can be improved, and LPC engineered Lip may serve as a promising formulation of PTX for future cancer therapy.


Assuntos
Neoplasias da Mama , Lipossomos , Animais , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Lipossomos/farmacologia , Lisofosfatidilcolinas/uso terapêutico , Camundongos , Paclitaxel/uso terapêutico , Distribuição Tecidual
9.
Ann Transl Med ; 9(3): 256, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33708883

RESUMO

BACKGROUND: The incidence of stroke or death in carotid endarterectomy (CEA) versus carotid artery stenting (CAS) cannot be estimated accurately. We aimed to compare periprocedural stroke or death in patients with symptomatic or asymptomatic carotid artery stenosis (CS) treated with CEA versus CAS. METHODS: Ten randomized trials (with ≥100 randomized patients per trial) compared the relative effectiveness of CAS and CEA for the prevention of stroke or death. RESULTS: In the symptomatic group during the periprocedural period, the results showed that the risk of death or any stroke [risk ratio (RR): 0.627; 95% CI: 0.497-0.792; P<0.001] and the risk of any stroke (RR: 0.654; 95% CI: 0.522-0.820; P<0.001) were significantly greater with CAS than with CEA. The difference in the risk of periprocedural stroke was mostly attributed to nondisabling stroke (RR: 0.407; 95% CI: 0.264-0.627; P<0.001), which was driven especially by ipsilateral ischemic stroke (RR: 0.649; 95% CI: 0.494-0.851; P=0.002) and bradycardia or hypotension (RR: 0.105; 95% CI: 0.051-0.217; P<0.001). However, we found that the CEA group had a higher rate of myocardial infarction than the CAS group (RR: 2.496; P=0.025). Meanwhile, ipsilateral stenosis >70% increased the incidence of periprocedural death or stroke for post-CEA patients (RR: 2.166, 95% CI: 1.112 to 4.220, P=0.023), but no risk factors were identified for post-CAS. Regarding the asymptomatic group, the results demonstrated that patients randomized to CEA had a significantly reduced risk of periprocedural stroke (RR: 0.518; 95% CI: 0.281-0.954; P=0.035), which seems to be driven by periprocedural minor stroke (RR: 0.482; 95% CI: 0.231-0.982; P=0.046). CONCLUSIONS: Among patients with symptomatic CS, CEA was associated with reduced rates of periprocedural stroke and periprocedural nondisabling stroke. Among patients with asymptomatic CS, the rates of minor stroke and stroke in general were higher with stenting than with CEA. Based on the current data, CEA is more beneficial than CAS for 30-day stroke prevention.

10.
Front Immunol ; 12: 802795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069587

RESUMO

Background: Immunotherapy, especially checkpoint inhibitors targeting PD-1 or PD-L1, has revolutionized cancer therapy. However, PD-1/PD-L1 inhibitors have not been investigated thoroughly in glioblastoma (GBM). Studies have shown that polymerase 1 and transcript release factor (PTRF/Cavin-1) has an immune-suppressive function in GBM. Thus, the relationship between PTRF and PD-L1 and their role in immune suppression requires further investigation in GBM. Methods: We used public databases and bioinformatics analysis to investigate the relationship between PTRF and PD-L1. We next confirmed the predicted relationship between PTRF and PD-L1 in primary GBM cell lines by using different experimental approaches. RIP-Seq, RIP, ChIP, and qRT-PCR were conducted to explore the molecular mechanism of PTRF in immunosuppression. Results: We found that PTRF stabilizes lncRNA NEAT1 to induce NF-κB and PD-L1 and promotes immune evasion in GBM. PTRF was found to correlate with immunosuppression in the public GBM databases. PTRF increased the level of PD-L1 in primary cell lines from GBM patients. We carried out RIP-Seq of GBM cells and found that PTRF interacts with lncRNA NEAT1 and stabilizes its mRNA. PTRF also promoted the activity of NF-κB by suppressing UBXN1 expression via NEAT1 and enhanced the transcription of PD-L1 through NF-κB activation. Finally, PTRF promoted immune evasion in GBM cells by regulating PD-1 binding and PD-L1 mediated T cell cytotoxicity. Conclusions: In summary, our study identified the PTRF-NEAT1-PD-L1 axis as a novel immune therapeutic target in GBM.


Assuntos
Antígeno B7-H1/metabolismo , Glioblastoma/etiologia , Glioblastoma/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/mortalidade , Glioblastoma/patologia , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Camundongos , Prognóstico , Estabilidade de RNA , Evasão Tumoral
11.
Clin Neurol Neurosurg ; 198: 106172, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32942133

RESUMO

BACKGROUND: Although several risk factors of the multiple intracranial aneurysms (MIAs) formation has been reported, the results are controversial. We aimed to find out the risk factors of MIAs formation by analyzing our clinic data combined with a meta-analysis. MATERIAL AND METHODS: A retrospective review work of medical records for the patients with aneurysms was undertaken. Univariate analysis was used to examine all mentioned variables. Binary logistic regression analysis was used to identify the risk factors of MIAs formation. RESULTS: In the retrospective review work, a total of 565 patients with aneurysm were included in this study. Of these 565 participants, 449 patients suffered SIAs and 116 patients suffered MIAs. Univariate analysis showed a significant difference in terms of female, cigarette smoking, family history of hypertension, and primary hypertension between the SIAs and MIAs group. The binary logistic regression analysis showed that the female (OR = 1.624), primary hypertension (OR = 1.563), and family history of hypertension (OR = 2.496) were independent risk factors of the formation of MIAs (for each P < 0.05). With regard to the meta-analysis results, it revealed that there was significant difference in the rates of female (P < 0.001), cigarette smoking (P < 0.001), primary hypertension (P = 0.001), and higher age (P = 0.011) among the MIAs patients. CONCLUSIONS: A higher rate of the formation of MIAs is closely associated with the elder and female. Patients with hypertension history, cigarette smoking, and family primary hypertension history also affected the formation of MIAs, these risk factors should be a guard against.


Assuntos
Aneurisma Intracraniano/epidemiologia , Feminino , Humanos , Hipertensão/complicações , Hipertensão/epidemiologia , Aneurisma Intracraniano/complicações , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...